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Abstract

In the first part of this research paper on SH wave propagation in the piezoelectric coupled plate by use of interdigital

transducer (IDT), the dispersion characteristics and the mode shapes of the wave propagation in this structure are

presented. The piezoelectric coupled plate is made of a metal host plate and a piezoelectric layer surface bonded on the

metal substrate. Such structure is analysed with piezoelectric effects fully coupled for the purpose of applying IDT to the

health monitoring of structures. The mathematical model of the SH wave propagation in this plate structure is based on

the type of surface wave solution. From the numerical simulations, the Bleustein–Gulyayev surface wave is observed for

the first mode of the wave propagation in this paper. The asymptotic solution for higher modes is the shear velocity

of the piezoelectric layer. The comparison of the dispersion curves for this piezoelectric coupled plate and the semi-

infinite piezoelectric coupled medium is also conducted. The mode shapes of the deflection and the electric potential of

the piezoelectric layer are derived and discussed. This research provides the basic model for the analysis of the wave

propagation in piezoelectric coupled plate, and the excitation of this type of surface wave by use of IDT will be studied

in the second part of the research. � 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Piezoelectric coupled plate; Interdigital transducer; Dispersion characteristics; Wave phase velocity; Health monitoring of

structures

1. Introduction

Interdigital transducer (IDT) was first used to excite the surface wave (SAW) devices in radar com-
munication equipment as filters and delay lines (Varadan and Varadan, 2000), and some consumer areas
such as pagers, mobile phone, and sensors (Morgan, 1998; Campbell, 1998; White, 1998). Its applications in
separating, amplifying, and storing signals and in other signal processing applications in acoustoelectronics
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were also considered important (Auld, 1973a,b; Parton and Kudryavtser, 1988). It should be noted in these
applications that, a semi-infinite piezoelectric medium was usually used as the substrate surface bonded by
a layer of metal. The dispersive characteristics of wave propagation in the above structures are main topics
to be studied before the application of IDT in wave excitation was conducted. Curtis and Redwood (1973)
proposed a solution for dispersion characteristics of the SH wave in a piezoelectric material of class 6 mm.
The conditions for the existence of various modes were presented. The piezoelectric medium in their studies
was surface bonded by a layer of metal. Such device was mainly used in geophysics and ultrasonics for the
processing of electrical signals. Hanhua and Xingjiao (1991, 1993) and Kielczynski et al. (1989) further
provided analyses on the shear-horizontal surface waves on piezoelectric ceramics with metal surface layer.
Their studies again presented the conditions for the existence of B–G surface wave and discussed a new
surface wave in the piezoelectric structure. To achieve desirable dispersion behaviour of elastic wave in
designing time delay device, Sun and Cheng (1974) introduced a metallic film overlay to a piezoelectric
cylinder. Different metal materials were employed to compare the coupling effect of different metal layers.
The review of the excitation of these waves by use of IDT will be discussed by the second part of the paper.
A general conclusion of the research on wave excitation by use of IDT is that an accurate analytical so-
lution for the wave excitation is expected.

IDT is recently found to have great potentials to be used as attractive sensors for various physical
variables, such as force, electric fields, magnetic fields, temperature, pressure and etc. (Varadan and
Varadan, 2000). Nowadays, an important application field of IDT is in the health monitoring of structures.
Some methods and experimental works on the rapid monitoring of structures using IDT to excite Lamb
wave have been attempted (Badcock and Birt, 2000; Monkhouse et al., 2000). A premise of applying IDT in
the wave excitation in the health monitoring of structures is to obtain the wave dispersion characteristics of
the piezoelectric coupled structures consisting of the substrate, mainly referred to metals and composites,
and a layer of piezoelectric materials. The new application of IDT in health monitoring of structures
initialises challenges in the field of structural mechanics. Since IDT is bonded on a piezoelectric layer which
is surface bonded on the metal substrate, the piezoelectric effects must be modelled in the dispersion
characteristics of the piezoelectric coupled structure. Such piezoelectric effect makes the physical model
more complicated in both the derivation of the dispersion characteristics and the derivation of the math-
ematical solution of the wave excitation by IDT. An accurate model coupling the piezoelectric effect in a
piezoelectric coupled structure is a key to study wave propagations in the structure. Wang et al. (2001)
studied the Love wave propagation in a semi-infinite metal medium with a piezoelectric layer mounted on
the surface. The Bleustein–Gulyaev wave was observed for the first mode of the wave solution. Some other
wave modes were also observed. The mode shapes of the electric potential and displacement were studied as
well in their work. However, more researches to further explore the potential of IDT in health monitoring
of structures are necessary.

The objective of this paper is to study the SH wave propagation in the piezoelectric plate. The dispersive
characteristics of wave propagation and the mode shape of the displacement, the electric potential, and the
electric displacement will be discussed in the first part of the research paper. An analytical solution for the
excitation of this type of surface wave by use of IDT is to be studied in the second part of the paper.

2. Formulation of the problem

Consider a metal plate with thickness h0 surface bonded by a layer of piezoelectric material with
thickness h as illustrated in Fig. 1. The propagation of SH wave in the host metal medium is governed by

c044r2u03 ¼ q0 o
2u03
ot2

ð1Þ
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where c044 ¼ 2G ¼ E=ð1þ m0Þ is the shear modulus, q0 the mass density, m0 the Poisson ratio, E the Young’s
module of the host medium, u03 the deflection of the host medium in the x3 direction, and r2 the Laplace
operator given by r2 ¼ o2=ox21 þ o2=ox22.

The shear stress can be written as

r0
23 ¼ c044

ou03
ox2

ð2Þ

When the poling direction of the piezoelectric layer is the transverse x3-direction, the coupling equation
for the piezoelectric layer is (Viktorov, 1981).

c44r2u3 þ e15r2/ ¼ q
o2u3
ot2

ð3Þ

e15r2u3 � N11r2/ ¼ 0 ð4Þ
where c44 ¼ ðc11 � c22Þ=2 is the elastic modulus, e15 the piezoelectric coefficient, N11 the dielectric constant,
and q the mass density of the piezoelectric layer, u3 the deflection of the piezoelectric layer in the x3-
direction, and / the electric potential. The shear stress in the piezoelectric layer is then written as

r23 ¼ c44
ou3
ox2

þ e15
o/
ox2

ð5Þ

Considering the case when the electrodes on the surfaces of the piezoelectric layer are shortly connected,
the boundary conditions for this piezoelectric coupled plate structure are expressed as

at x2 ¼ 0:

u3 ¼ u03 ð6Þ

r23 ¼ r0
23 ð7Þ

/ ¼ 0 ð8Þ
at x2 ¼ �h:

r23 ¼ 0 ð9Þ

/ ¼ 0 ð10Þ
at x2 ¼ h0:

r0
23 ¼ 0 ð11Þ

Fig. 1. An infinite metal plate surface bonded by a layer of piezoelectric material.
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The solutions of u03 for wave propagation in the x1-direction can be expressed as

u03 ¼ f 0ðx2Þeixðt�ðx1=cÞÞ ð12Þ
Substituting Eq. (12) into Eq. (1) yields the solution of u03 as

u03 ¼ ðC1e
�v0x2 þ C2e

v0x2Þeixðt�ðx1=cÞÞ ð13Þ
where v0 ¼ x=c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc=m0Þ2

q
, m02 ¼ c044=q

0, and the derivation of Eq. (13) is under the assumption of c < m0. It
can be seen from Eq. (13) that the wave decays exponentially in the thickness direction of the plate. As such,
we refer this type of the solution of the wave propagation as the surface wave solution. Such surface wave
solution will not exist when SH wave in a pure metal layer in considered. When c > m0, the SH wave
propagation in a pure metal layer is studied by Graff (1975) by using the type of plane wave solution which
uses the sine and cosine functions to present the wave solution in the flexural direction of the plate. In this
paper, the type of surface wave solution of the SH wave propagation in the piezoelectric plate based on Eq.
(13) will be discussed in the first part of the paper. Further, this type of surface wave solution will be used in
the deduction of the surface wave propagation by use of IDT in this piezoelectric coupled plate in the
second part of the paper.

By assuming w ¼ / � ðe15=N11Þu3, Eq. (4) becomes

r2w ¼ 0 ð14Þ

whose solution is

w ¼ B1e
�v1x2ð þ B2e

v1x2Þeix t�ðx1=cÞð Þ ð15Þ
where v1 ¼ x=c.

Substituting Eq. (4) into Eq. (3) yields

�cc44r2u3 ¼ q
o2u3
ot2

ð16Þ

where �cc44 ¼ c44 þ ðe215=N11Þ, which is stiffened elastic constant in the piezoelectric layer.
The solution of Eq. (16) can be expressed as

u3 ¼ A1e
�v2x2ð þ A2e

v2x2Þeix t�ðx1=cÞð Þ if c < m ð17Þ

u3 ¼ A1 cos v2x2ð þ A2 sin v2x2Þeix t�ðx1=cÞð Þ if m0 > c > m ð18Þ

where v2 ¼ x=c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1� ðc=mÞ2j

q
and m2 ¼ �cc44=q.

The electric potential can now be obtained from Eqs. (15), (17) and (18),

/ ¼ B1e
�v1x2ð

�
þ B2e

v1x2Þ þ e15
N11

A1e
�v2x2ð þ A2e

v2x2Þ
�
eix t�ðx1=cÞð Þ if c < m ð19Þ

/ ¼ ðB1e
�v1x2

�
þ B2e

v1x2Þ þ e15
N11

ðA1 cos v2x2 þ A2 sin v2x2Þ
�
eixðt�ðx1=cÞÞ if m0 > c > m ð20Þ

The shear stresses in the metal plate can be obtained by substituting Eq. (13) into Eq. (2),

r0
23 ¼ c044ð�v0C1e

�v0x2 þ v0C2e
v0x2Þeixðt�ðx1=cÞÞ ð21Þ

The shear stress in the piezoelectric layer can be obtained by substituting Eqs. (17)–(20) into Eq. (5),

r23 ¼ ½ð�v2Þ�cc44ðA1e
�v2x2 � A2e

v2x2Þ þ ð�v1Þe15ðB1e
�v1x2 � B2e

v1x2Þ
eix t�ðx1=cÞð Þ if c < m ð22Þ
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r23 ¼ ½ð�v2Þ�cc44ðA1 sin v2x2 � A2 cos v2x2Þ þ ð�v1Þe15ðB1e
�v1x2 � B2e

v1x2Þ
eix t�ðx1=cÞð Þ if m0 > c > m ð23Þ
The dispersion characteristics of the SH wave by the surface wave solution in this piezoelectric coupled

plate will be obtained by studying the general solutions derived above to satisfy the boundary conditions
shown in Eqs. (6)–(11).

3. Dispersion relation

Substituting solutions of this piezoelectric coupled plate into the boundary conditions will result in an
eigen-value problem from which the dispersive characteristics for this piezoelectric coupled plate may be
deduced.

For the case when c < m, the boundary conditions in Eqs. (6)–(11) become the following expression after
substituting the solutions in Eqs. (13)–(23) in them,

C1 þ C2 ¼ A1 þ A2 ð24Þ

ð�v2Þ�cc44ðA1 � A2Þ þ ð�v1Þe15ðB1 � B2Þ ¼ ð�v0Þc044C1 þ v0c044C2 ð25Þ

B1 þ B2 þ
e15
N11

A1ð þ A2Þ ¼ 0 ð26Þ

ð�v2Þ�cc44ðA1e
v2h � A2e

�v2hÞ þ ð�v1Þe15 B1e
v1h

�
� B2e

�v1h
�
¼ 0 ð27Þ

ðB1e
v1h þ B2e

�v1hÞ þ e15
N11

A1e
v2h

�
þ A2e

�v2h
�
¼ 0 ð28Þ

C1e
�v0h0 � C2e

v0h0 ¼ 0 ð29Þ
From Eq. (29), we have,

C1 ¼ C2e
2v0h0 ð30Þ

Substituting Eqs. (24) and (30) into Eq. (25) yields,

B1 � B2 ¼ D1A1 þ D2A2 ð31Þ
where

D1 ¼
ðe2v0h0 � 1Þ
e2v0h0 þ 1
� � c044

e15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c

m0

� �2
r

� �cc44
e15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c

m

� �2











s

;

D2 ¼
ðe2v0h0 � 1Þ
e2v0h0 þ 1
� � c044

e15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c

m0

� �2
r

þ �cc44
e15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c

m

� �2











s

B1 and B2 can be expressed in terms of A1 and A2 as follows when taking references of Eqs. (26) and (31)

B1 ¼
1

2
D1

�
� e15

N11



A1 þ

1

2
D2

�
� e15

N11



A2 ð32Þ

B2 ¼
1

2

�
� D1 �

e15
N11



A1 þ

1

2

�
� D2 �

e15
N11



A2 ð33Þ

Substituting B1 and B2 into Eqs. (27) and (28), we have,
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E1A1 þ E2A2 ¼ 0 ð34Þ

E3A1 þ E4A2 ¼ 0 ð35Þ

where

E1 ¼
1

2
D1

�
� e15

N11



ev1h � 1

2

�
� D1 �

e15
N11



e�v1h þ 1

2
ðD2 � D1Þev2h

E2 ¼
1

2
D2

�
� e15

N11



ev1h � 1

2

�
� D2 �

e15
N11



e�v1h � 1

2
ðD2 � D1Þe�v2h

E3 ¼
1

2
D1

�
� e15

N11



ev1h þ 1

2

�
� D1 �

e15
N11



e�v1h þ e15

N11

ev2h

E4 ¼
1

2
D2

�
� e15

N11



ev1h þ 1

2

�
� D2 �

e15
N11



e�v1h þ e15

N11

e�v2h

The dispersive relation can be obtained by imposing the condition for non-trivial solution of A1 and A2,
namely,

E1 E2

E3 E4










 ¼ 0 ð36Þ

i.e.

E1E4 � E2E3 ¼ 0 ð37Þ
For the case when m0 > c > m, the following equations will be obtained after substituting the solutions in

Eqs. (13)–(23) into boundary conditions Eqs. (6)–(11)

C1 þ C2 ¼ A1 ð38Þ

ð�v2Þ�cc44ð�A2Þ þ ð�v1Þe15ðB1 � B2Þ ¼ ð�v0Þc044C1 þ v0c044C2 ð39Þ

B1 þ B2 þ
e15
N11

A1ð Þ ¼ 0 ð40Þ

ð�v2Þ�cc44ð�A1 sin v2h� A2 cos v2hÞ þ ð�v1Þe15ðB1e
v1h � B2e

�v1hÞ ¼ 0 ð41Þ

B1e
v1h

�
þ B2e

�v1h
�
þ e15

N11

A1 cos v2hð � A2 sin v2hÞ ¼ 0 ð42Þ

and Eq. (29) remains same.
Similarly, B1 and B2 can be expressed in terms of A1 and A2 as

B1 ¼
1

2

1

2
D1ð

�
þ D2Þ �

e15
N11



A1 þ

1

4
D2ð � D1ÞA2 ð43Þ

B2 ¼
1

2

�
� 1

2
D1ð þ D2Þ �

e15
N11



A1 �

1

4
D2ð � D1ÞA2 ð44Þ

Substituting B1 and B2 into Eqs. (41) and (42), we have

E5A1 þ E6A2 ¼ 0 ð45Þ

E7A1 þ E8A2 ¼ 0 ð46Þ
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where

E5 ¼
1

2

1

2
ðD1

�
þ D2Þ �

e15
N11



ev1h � 1

2

�
� 1

2
ðD1 þ D2Þ �

e15
N11



e�v1h � 1

2
ðD2 � D1Þ sin v2h

E6 ¼
1

2
ðD2 � D1Þ

1

2
ev1h

�
þ 1

2
e�v1h � cos v2h




E7 ¼
1

2

1

2
ðD1

�
þ D2Þ �

e15
N11



ev1h þ 1

2

�
� 1

2
ðD1 þ D2Þ �

e15
N11



e�v1h þ e15

N11

cos v2h

E8 ¼
1

2
ðD2 � D1Þ

1

2
ev1h

�
� 1

2
e�v1h � e15

N11

sin v2h



The dispersive relation can then be obtained as follows

E5 E6

E7 E8










 ¼ 0 ð47Þ

i.e.

E5E8 � E6E7 ¼ 0 ð48Þ

4. Mode shapes in piezoelectric layer

The mode shapes for deflection and electric potential in the thickness direction of piezoelectric layer may
be obtained from characteristic equation of Eq. (37) or (48) depending on the wave velocity as follows.

When c < m, Eq. (34) implies

A2 ¼ �E1

E2

A1 ð49Þ

and the spatial components of the deflection u3 and the electric potential / in x2-direction are from Eqs. (17)
and (19)

�uu3 ¼ A1 e�v2x2

�
� E1

E2

ev2x2



ð50Þ

�// ¼ A1

1

2
D1

��
� e15

N11



� 1

2
D2

�
� e15

N11



E1

E2

þ e15
N11

�
e�v2x2

þ A1

1

2

��
� D1 �

e15
N11



� 1

2

�
� D2 �

e15
N11



E1

E2

� e15
N11

E1

E2

�
ev2x2 ð51Þ

The mode shapes for deflection of the metal core is obtained from Eq. (13),

�uu03 ¼ C2ðe�v0x2e2v
0h0 þ ev0x2Þ ð52Þ

When m0 > c > m, Eq. (45) gives

A2 ¼ �E5

E6

A1 ð53Þ

and the spatial components of the deflection u3 and the electric potential / in x2-direction are

�uu3 ¼ A1 cos v2x2

�
� E5

E6

sin v2x2



ð54Þ
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�// ¼ A1

1

2

1

2
D1ð

��
þ D2Þ �

e15
N11



� 1

4
D2ð � D1Þ

E5

E6

�
e�v2x2 þ A1

1

2

��
� 1

2
D1ð þ D2Þ �

e15
N11




þ 1

4
D2ð � D1Þ

E5

E6

�
ev2x2 þ A1

e15
N11

cos v2x2

�
� E5

E6

sin v2x2



ð55Þ

Numerical simulations are performed to illustrate the results of the dispersive characteristics and the
mode shapes obtained above and presented in the following section.

5. Numerical simulations and discussions

In this numerical session, SH wave propagation in a steel core plate surface bonded by a layer of PZT 4
will be discussed. In Table 1, the material properties of steel and PZT 4 are listed. The shear wave velocities
for the host steel and the PZT layer are v0jsteel ¼ 3281 m/s, vjPZT4 ¼ 2351 m/s. The Bleustein–Gulyayev
surface wave velocities in PZT4 can be determined (Viktorov, 1981; Gulyaev and Plesskii, 1977; Bleustein,
1969) by the following equation vB ¼ vð1� ðk415=ð1þ k215Þ

2ÞÞ1=2, and k215 ¼ e215=c44N11v is the shear wave
velocity of the piezoelectric material. Such surface wave velocity of PZT4 is vBjPZT4 ¼ 2181 m/s.

The non-dimensional phase velocity is taken as �cc ¼ c=cB and the non-dimensional wave number is used
by �nn ¼ nh=2p. In Fig. 2, the dispersion curves for the first three modes of the steel–PZT coupled plate are
presented. It is observed that the phase velocity of the first mode approaches the Bleustein–Gulyaev wave
velocity at large wave number. This is due to the fact the surface wave for the piezoelectric layer becomes
dominant when the wave number is large compared with the thickness of the layer for this type of the
surface wave solution for the piezoelectric layer. Another observation from Fig. 2 is that the wave velocities
of the higher modes, i.e. second and third modes, tend to the shear velocity of the piezoelectric layer at
higher wave number.

In order to give comparison of the dispersion characteristics by the piezoelectric effects, Fig. 3 presents
the dispersion curves for the first mode at different ratios of the thickness of the piezoelectric layer to the
thickness of the host plate. The solution of wave propagation in a semi-infinite steel–PZT 4 piezoelectric
coupled medium discussed by Wang et al. (2001) is used here as the benchmark for the case of zero ratio of
the thickness of the piezoelectric layer. Big discrepancy is found at lower wave number. However, all the
curves convergence at higher wave number. This observation is within the expectation. At the lower ratios,
the wavelength of the SH wave is comparable with the thickness of the layer, thus the dispersions curves
show different variations for different thickness ratios of the thickness of the layer. Besides, the wave ve-
locities at smaller ratios are bigger than those for higher wave number as the steel core is stiffer than the
piezoelectric layer. Nevertheless, since the wavelength of the SH wave is smaller than the thickness of the

Table 1

Material properties

Host structure (steel) Piezoelectric layer (PZT4)

Young’s module (N/m2) E ¼ 210� 109 c11 ¼ 132� 109 c12 ¼ 73� 109

c22 ¼ 115� 109 c13 ¼ 71� 109

Mass density (kg/m3) 7:8� 103 7:5� 103

e15 (C/m2) – 10.5

e31 (C/m2) – �4.1

N0 (F/m) – 8:854� 10�12

N11=N0 – 800

N33=N0 – 660
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piezoelectric layer at higher wave number, the piezoelectric layer dominates the characteristics of the SH
wave propagation. Hence the asymptotic solution of the wave velocity for this first mode is no doubt the
Bleustein–Gulyaev wave velocity shown in Figs. 2 and 3.

The mode shapes of the deflection and the electric potential in the thickness direction of the piezoelectric
layer are presented in Figs. 4–6 for the first mode shape at non-dimensional wave number of 0.1 and 1.0 and
the second mode shape at non-dimensional wave number of 1.0 separately. Similar to the recent results
obtained by Wang et al. (2001), the electric potential changes its shape from an approximate quadratic
shape for the first mode and at lower wave number, 0.1, to a distorted one for the same mode but at higher
wave number, i.e. 1.0. In addition, this distorted shape changes to a more distorted shape with one more
zero nodes for the second mode at the same wave number 1.0. The mode shape for the deflection changes its
shape from a straight line to a skewed one and finally to a curve with one zero node when the first and
second mode shape are studied at wave number of 0.1 and 1.0.

Fig. 2. Dispersions curves for steel-PZT plate.

Fig. 3. Comparison of the first wave mode for different ratios of the thickness of piezoelectric layer.
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6. Concluding remarks

This paper is the first part of the study on the SH wave propagation in the piezoelectric coupled plate by
use of IDT. In this part, the dispersion characteristics of the wave, as well as the mode shapes of the de-
flection and the electric potential of the piezoelectric layer are presented based on the type of surface wave
solution. From the numerical simulation of a steel–PZT coupled plate structure, the Bleustein–Gulyayev
surface wave is found for the first mode of this SH wave propagation. Besides, the asymptotic solution for
higher wave modes is found to be the shear wave velocity of the piezoelectric layer. The comparison of
the dispersion curves for different ratios of the piezoelectric thickness is also conducted. The result of the
surface wave propagation in a semi-infinite piezoelectric coupled medium is used as the zero ratio of the
thickness of the piezoelectric layer for the comparison. The mode shapes of the deflection and the electric

Fig. 4. First mode shape of the piezoelectric layer at non-dimensional wave number 0.1.

Fig. 5. First mode shape of the piezoelectric layer at non-dimensional wave number 1.0.
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potential of the piezoelectric layer are also derived, and the variation of the mode shapes shows a trend of
standard shapes to distorted shapes with more zero nodes for higher modes and at higher wave number.
This research provides the basic model for the analysis of the wave propagation in piezoelectric coupled
plate. In second part of the research, this type of surface wave solution will be used for the study of the
wave excitation by use of IDT.
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