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Abstract

In the first part of this research paper on SH wave propagation in the piezoelectric coupled plate by use of interdigital
transducer (IDT), the dispersion characteristics and the mode shapes of the wave propagation in this structure are
presented. The piezoelectric coupled plate is made of a metal host plate and a piezoelectric layer surface bonded on the
metal substrate. Such structure is analysed with piezoelectric effects fully coupled for the purpose of applying IDT to the
health monitoring of structures. The mathematical model of the SH wave propagation in this plate structure is based on
the type of surface wave solution. From the numerical simulations, the Bleustein—Gulyayev surface wave is observed for
the first mode of the wave propagation in this paper. The asymptotic solution for higher modes is the shear velocity
of the piezoelectric layer. The comparison of the dispersion curves for this piezoelectric coupled plate and the semi-
infinite piezoelectric coupled medium is also conducted. The mode shapes of the deflection and the electric potential of
the piezoelectric layer are derived and discussed. This research provides the basic model for the analysis of the wave
propagation in piezoelectric coupled plate, and the excitation of this type of surface wave by use of IDT will be studied
in the second part of the research. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Interdigital transducer (IDT) was first used to excite the surface wave (SAW) devices in radar com-
munication equipment as filters and delay lines (Varadan and Varadan, 2000), and some consumer areas
such as pagers, mobile phone, and sensors (Morgan, 1998; Campbell, 1998; White, 1998). Its applications in
separating, amplifying, and storing signals and in other signal processing applications in acoustoelectronics
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were also considered important (Auld, 1973a,b; Parton and Kudryavtser, 1988). It should be noted in these
applications that, a semi-infinite piezoelectric medium was usually used as the substrate surface bonded by
a layer of metal. The dispersive characteristics of wave propagation in the above structures are main topics
to be studied before the application of IDT in wave excitation was conducted. Curtis and Redwood (1973)
proposed a solution for dispersion characteristics of the SH wave in a piezoelectric material of class 6 mm.
The conditions for the existence of various modes were presented. The piezoelectric medium in their studies
was surface bonded by a layer of metal. Such device was mainly used in geophysics and ultrasonics for the
processing of electrical signals. Hanhua and Xingjiao (1991, 1993) and Kielczynski et al. (1989) further
provided analyses on the shear-horizontal surface waves on piezoelectric ceramics with metal surface layer.
Their studies again presented the conditions for the existence of B-G surface wave and discussed a new
surface wave in the piezoelectric structure. To achieve desirable dispersion behaviour of elastic wave in
designing time delay device, Sun and Cheng (1974) introduced a metallic film overlay to a piezoelectric
cylinder. Different metal materials were employed to compare the coupling effect of different metal layers.
The review of the excitation of these waves by use of IDT will be discussed by the second part of the paper.
A general conclusion of the research on wave excitation by use of IDT is that an accurate analytical so-
lution for the wave excitation is expected.

IDT is recently found to have great potentials to be used as attractive sensors for various physical
variables, such as force, electric fields, magnetic fields, temperature, pressure and etc. (Varadan and
Varadan, 2000). Nowadays, an important application field of IDT is in the health monitoring of structures.
Some methods and experimental works on the rapid monitoring of structures using IDT to excite Lamb
wave have been attempted (Badcock and Birt, 2000; Monkhouse et al., 2000). A premise of applying IDT in
the wave excitation in the health monitoring of structures is to obtain the wave dispersion characteristics of
the piezoelectric coupled structures consisting of the substrate, mainly referred to metals and composites,
and a layer of piezoelectric materials. The new application of IDT in health monitoring of structures
initialises challenges in the field of structural mechanics. Since IDT is bonded on a piezoelectric layer which
is surface bonded on the metal substrate, the piezoelectric effects must be modelled in the dispersion
characteristics of the piezoelectric coupled structure. Such piezoelectric effect makes the physical model
more complicated in both the derivation of the dispersion characteristics and the derivation of the math-
ematical solution of the wave excitation by IDT. An accurate model coupling the piezoelectric effect in a
piezoelectric coupled structure is a key to study wave propagations in the structure. Wang et al. (2001)
studied the Love wave propagation in a semi-infinite metal medium with a piezoelectric layer mounted on
the surface. The Bleustein—Gulyaev wave was observed for the first mode of the wave solution. Some other
wave modes were also observed. The mode shapes of the electric potential and displacement were studied as
well in their work. However, more researches to further explore the potential of IDT in health monitoring
of structures are necessary.

The objective of this paper is to study the SH wave propagation in the piezoelectric plate. The dispersive
characteristics of wave propagation and the mode shape of the displacement, the electric potential, and the
electric displacement will be discussed in the first part of the research paper. An analytical solution for the
excitation of this type of surface wave by use of IDT is to be studied in the second part of the paper.

2. Formulation of the problem

Consider a metal plate with thickness 4 surface bonded by a layer of piezoelectric material with
thickness % as illustrated in Fig. 1. The propagation of SH wave in the host metal medium is governed by

, %!
Vi = p’ﬁ (1)
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Fig. 1. An infinite metal plate surface bonded by a layer of piezoelectric material.

where ¢}, = 2G = E/(1 + V') is the shear modulus, p’ the mass density, v' the Poisson ratio, E the Young’s
module of the host medium, «} the deflection of the host medium in the x; direction, and V? the Laplace
operator given by V2 = 8?/0x? + 9% /0x3.

The shear stress can be written as

, , o
023 = Cy 67); (2)

When the poling direction of the piezoelectric layer is the transverse x;-direction, the coupling equation
for the piezoelectric layer is (Viktorov, 1981).

) 2, 62u3
cauVus +e;sV ¢ = pw (3)

eisViuy — 51,V =0 4)

where ¢y = (¢ — ¢22)/2 is the elastic modulus, e;s the piezoelectric coefficient, =}, the dielectric constant,
and p the mass density of the piezoelectric layer, u; the deflection of the piezoelectric layer in the x;3-
direction, and ¢ the electric potential. The shear stress in the piezoelectric layer is then written as
Ous 0
023 = Cyu=—+ €157 5
B = Cug tesg (5)
Considering the case when the electrodes on the surfaces of the piezoelectric layer are shortly connected,
the boundary conditions for this piezoelectric coupled plate structure are expressed as
at x, = 0:

uy = U (6)

023 = 0Oy (7)

¢ =0 (®)
at x, = —h

073 = 0 (9)

¢ =0 (10)
at x, = n
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The solutions of u} for wave propagation in the x;-direction can be expressed as

iy = £ (x) 1/ (12)
Substituting Eq. (12) into Eq. (1) yields the solution of u as
ug _ (Cle—x/xz + Czex’xz)eiw(t—(n/t')) (13)

where ' = w/cy/1 — (¢/V')*,v* = ¢}, /p', and the derivation of Eq. (13) is under the assumption of ¢ < V. It
can be seen from Eq. (13) that the wave decays exponentially in the thickness direction of the plate. As such,
we refer this type of the solution of the wave propagation as the surface wave solution. Such surface wave
solution will not exist when SH wave in a pure metal layer in considered. When ¢ >/, the SH wave
propagation in a pure metal layer is studied by Graff (1975) by using the type of plane wave solution which
uses the sine and cosine functions to present the wave solution in the flexural direction of the plate. In this
paper, the type of surface wave solution of the SH wave propagation in the piezoelectric plate based on Eq.
(13) will be discussed in the first part of the paper. Further, this type of surface wave solution will be used in
the deduction of the surface wave propagation by use of IDT in this piezoelectric coupled plate in the
second part of the paper.

By assuming = ¢ — (eys/Z11)us, Eq. (4) becomes
Vi =0 (14)
whose solution is
Y = (Bje 1% 4 Byeh2)eloli=(ni/e)) (15)

where y, = w/c.
Substituting Eq. (4) into Eq. (3) yields

_ 62u3
C44VZU3 = pw (16)
where ¢4 = c44 + (€35/Z11), which is stiffened elastic constant in the piezoelectric layer.
The solution of Eq. (16) can be expressed as
uy = (A7 4 A,e7%2)e U=/ if ¢ <y (17)
uy = (A4 co8 Xz + A4, sin xzxz)ei‘““*("‘/")) ifv>c>v (18)
where 7, = w/cy/|1 — (¢/v)*| and v? = c4/p.
The electric potential can now be obtained from Egs. (15), (17) and (18),
- —1% nxy 4 C15 — 2% %) | gloli=(x1/)
¢ = |(Bie + Bye"?) + ——(4;e + A,e72) |e ife<vy (19)
Z11
¢ = [(Ble‘)“"2 + Bye"™) + ij (4, cos ypx2 + 45 sin szz)} =/ if Yy s e >y (20)
Z11
The shear stresses in the metal plate can be obtained by substituting Eq. (13) into Eq. (2),
0-’23 = cim(_x’cle—x’xz + chzex’xz)eiw(t—(n/d) (21)

The shear stress in the piezoelectric layer can be obtained by substituting Egs. (17)-(20) into Eq. (5),

023 = [(—X2)5’44(A1€712X2 —Azelm) + (—X1)615(316711x2 — BQCXIXZ)]Ciw(F(xl/L‘)) if e<v (22)
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023 = [(—)2)Caa(A) 8IN y,x7 — Ay €OS yox2) + (—y)ers(Bie ™ — Bze’“"z)}ei‘“(’*()“/")) ifv>c>v (23)

The dispersion characteristics of the SH wave by the surface wave solution in this piezoelectric coupled
plate will be obtained by studying the general solutions derived above to satisfy the boundary conditions
shown in Egs. (6)—(11).

3. Dispersion relation

Substituting solutions of this piezoelectric coupled plate into the boundary conditions will result in an
eigen-value problem from which the dispersive characteristics for this piezoelectric coupled plate may be
deduced.

For the case when ¢ < v, the boundary conditions in Egs. (6)—(11) become the following expression after
substituting the solutions in Egs. (13)—(23) in them,

Ci+C=4,+ 4, (24)
(=x2)cas(dr — A2) + (—1)ers(Br — Ba) = (=1 )ciuCr + /iy Ca (25)
Bi+By+ 22 (A + 45) =0 (26)
En
(—}{2)544(141612" —Aze_lzh) 4+ (—X1)€15(316X'h — Bze_Z'h) =0 (27)
(Bieh" + Bye~nhy 4 215 (d1e" + e ") =0 (28)
=11
Cre " — e’ =0 (29)
From Eq. (29), we have,
Cr = Ce” (30)
Substituting Egs. (24) and (30) into Eq. (25) yields,
B) — By = D14, + D4, (31)
where
(" —1) ¢l €\’ _Cu c\?
D =S4 1=(=) ——4/1=1(-
1= (e ’h/ ) €15 (V/) €15 (V) ’
(" —1) c44 / c\?  Cu c\?2
Dy=—"-—= 1—(-= 2= (2
? (ezl'h’ + 1) €15 (V/) * es (V)

B, and B, can be expressed in terms of 4; and 4, as follows when taking references of Egs. (26) and (31)

1 1
B, (D1 )Al qo (D2 —Q)Az (32)
2 ._411 2 =501

1 1
By=-= ( D —2>A1 4z < DQ—E)A2 (33)
2 =11 2 =11

Substituting B, and B, into Egs. (27) and (28), we have,
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ElAl + E2A2 = O (34)
Esd, + E4dy =0 (35)
where

p
\

p
!

1 I

a=3(og ) (o s |
;<D2 2115>e11" —;(—DZ —e”>e—%lh —%(D2 —Dy)e ~
1 1

moa(og ) (o g

1

E,= <D2_2>ellh+%<_D2_2>eth_|_iie)(2h

The dispersive relation can be obtained by imposing the condition for non-trivial solution of 4, and A4,,
namely,

E, E|
‘ 5 5| =0 (36)
ie.
E\Ey — E2Es = 0 (37)

For the case when v > ¢ > v, the following equations will be obtained after substituting the solutions in
Egs. (13)—(23) into boundary conditions Eqs. (6)—(11)

Ci+C =4, (38)
(=22)Caa(=42) + (=1 )ers(Br — Ba) = (=1 )ciyCr + 'y Ca (39)
Byt Byt 2 (1) =0 (40)
(—12)Cas(—Ay sin g, — A5 c08 y2h) 4+ (=1, )ers(Bie"" — Bre ™M) =0 (41)
(Bie" + Bye ") + 15 (4 cos zoh — Ay sin ) = 0 (42)

=11
and Eq. (29) remains same.
Similarly, B, and B, can be expressed in terms of 4; and 4, as

1/1 e 1

Bi==(=(Di+ D) —== )4, +~ (D, — Dy)4, (43)
2\ 2 Z, 4
1 1 e 1

By=~ —=(D+Dy) — = |4y — (D, — D)4, (44)
2\ 2 2 4

Substituting B; and B, into Eqgs. (41) and (42), we have
Esd; + Egd, =0 (45)

E14) + Egdr = 0 (46)
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where
1 1 e1s 1 1 €1s . 1 .
Es=—=(D +Dy) — == |e"" =~ —=(Dy +D,) — == |e " — (D, — D 1>h
5 2(2( 1+ D) En)e 2( 3 (Dr4Dy) === Je 5 (D2 = Dy)sin
1 | YRR
E(,:E(DZ—D]) Ee* +§e 4% — cos yph
1
2)6“" + ii cos yyh
=11

1/1 1
S(Dy+Dy) — 2B )er 42 (S (Dy+Dy) — 2
2 2 11

=11

E ==
772\2
1 1 1 es .
Ey = E(DZ - D) (56“1’ —5e ik — 3—1]51 sm;{2h>
The dispersive relation can then be obtained as follows
Es Eg| _
E; Eg| 0 (47)
ie.
ESEg - E6E7 = 0 (48)

4. Mode shapes in piezoelectric layer
The mode shapes for deflection and electric potential in the thickness direction of piezoelectric layer may

be obtained from characteristic equation of Eq. (37) or (48) depending on the wave velocity as follows.
When ¢ < v, Eq. (34) implies
(49)

E;
A, =—=14
2 E2 1
and the spatial components of the deflection u; and the electric potential ¢ in x,-direction are from Eqs. (17)
and (19)
; E,
= A Y2 - al2¥2 50
Uus 1 (e E2 € ) ( )
1 615> 1 ( elS)El 315} _
=A|= (D -2 ) -2 (D, -2 )24 B |enn
¢ 1|:2< ! =11 2 ? =11 E2 =11
1 €15> 1( 615>E1 ers E1:| ,
+A |z —-Di——=— ) —z| —Dy—— | = —=— — |el*" 51
1[2( ! =11 2 ? En/)E En b ( )
The mode shapes for deflection of the metal core is obtained from Eq. (13),
iy = Cy(e 7 e 4 er™2) (52)
When v > ¢ > v, Eq. (45) gives
Es
Ay =——4 53
2T R (53)
and the spatial components of the deflection u3 and the electric potential ¢ in x,-direction are
(54)

_ Es .
uy = Ay | cos yxy — T SIN Y,X7
6
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- 1 1 e1s l E5 _ 1 1 €15
=A== +D) =22 ) =Dy = D)2 e 4 Ay | = [ —=(Dy +Dy) — 22
¢ ‘{2(2( 1+ D) 511> 5 (P ')EJG + ‘{2( 5 (D1 +D) 511>
1 Es]| . Es .
+ - (D, —Dl)—s} e + 4, ? <cos X2 — = Sin 12x2> (55)
4 Eg En Eg

Numerical simulations are performed to illustrate the results of the dispersive characteristics and the
mode shapes obtained above and presented in the following section.

5. Numerical simulations and discussions

In this numerical session, SH wave propagation in a steel core plate surface bonded by a layer of PZT 4
will be discussed. In Table 1, the material properties of steel and PZT 4 are listed. The shear wave velocities
for the host steel and the PZT layer are v'|,., = 3281 m/s, v|p,r, = 2351 m/s. The Bleustein-Gulyayev
surface wave velocities in PZT4 can be determined (Viktorov, 1981; Gulyaev and Plesskii, 1977; Bleustein,
1969) by the following equation vg = v(1 — (k¥ /(1 4+ k%)*))"/?, and k% = €2, /cauZ)iv is the shear wave
velocity of the piezoelectric material. Such surface wave velocity of PZT4 is vg|pyr, = 2181 m/s.

The non-dimensional phase velocity is taken as ¢ = ¢/cp and the non-dimensional wave number is used
by & = éh/2n. In Fig. 2, the dispersion curves for the first three modes of the steel-PZT coupled plate are
presented. It is observed that the phase velocity of the first mode approaches the Bleustein—-Gulyaev wave
velocity at large wave number. This is due to the fact the surface wave for the piezoelectric layer becomes
dominant when the wave number is large compared with the thickness of the layer for this type of the
surface wave solution for the piezoelectric layer. Another observation from Fig. 2 is that the wave velocities
of the higher modes, i.e. second and third modes, tend to the shear velocity of the piezoelectric layer at
higher wave number.

In order to give comparison of the dispersion characteristics by the piezoelectric effects, Fig. 3 presents
the dispersion curves for the first mode at different ratios of the thickness of the piezoelectric layer to the
thickness of the host plate. The solution of wave propagation in a semi-infinite steel-PZT 4 piezoelectric
coupled medium discussed by Wang et al. (2001) is used here as the benchmark for the case of zero ratio of
the thickness of the piezoelectric layer. Big discrepancy is found at lower wave number. However, all the
curves convergence at higher wave number. This observation is within the expectation. At the lower ratios,
the wavelength of the SH wave is comparable with the thickness of the layer, thus the dispersions curves
show different variations for different thickness ratios of the thickness of the layer. Besides, the wave ve-
locities at smaller ratios are bigger than those for higher wave number as the steel core is stiffer than the
piezoelectric layer. Nevertheless, since the wavelength of the SH wave is smaller than the thickness of the

Table 1
Material properties
Host structure (steel) Piezoelectric layer (PZT4)
Young’s module (N/m?) E =210 x 10° e =132 x10° ¢, =73 x 10°
Cyp = 115 x 109 Ci3 = 71 x 109
Mass density (kg/m?) 7.8 x 10 7.5 x 103
els (C/mz) — 10.5
es] (C/mz) - —4.1
Zy (F/m) - 8.854 x 10712
En /8 - 800

533 /30 - 660
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Fig. 2. Dispersions curves for steel-PZT plate.
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Fig. 3. Comparison of the first wave mode for different ratios of the thickness of piezoelectric layer.

piezoelectric layer at higher wave number, the piezoelectric layer dominates the characteristics of the SH
wave propagation. Hence the asymptotic solution of the wave velocity for this first mode is no doubt the
Bleustein—Gulyaev wave velocity shown in Figs. 2 and 3.

The mode shapes of the deflection and the electric potential in the thickness direction of the piezoelectric
layer are presented in Figs. 4-6 for the first mode shape at non-dimensional wave number of 0.1 and 1.0 and
the second mode shape at non-dimensional wave number of 1.0 separately. Similar to the recent results
obtained by Wang et al. (2001), the electric potential changes its shape from an approximate quadratic
shape for the first mode and at lower wave number, 0.1, to a distorted one for the same mode but at higher
wave number, i.e. 1.0. In addition, this distorted shape changes to a more distorted shape with one more
zero nodes for the second mode at the same wave number 1.0. The mode shape for the deflection changes its
shape from a straight line to a skewed one and finally to a curve with one zero node when the first and
second mode shape are studied at wave number of 0.1 and 1.0.
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6. Concluding remarks

This paper is the first part of the study on the SH wave propagation in the piezoelectric coupled plate by
use of IDT. In this part, the dispersion characteristics of the wave, as well as the mode shapes of the de-
flection and the electric potential of the piezoelectric layer are presented based on the type of surface wave
solution. From the numerical simulation of a steel-PZT coupled plate structure, the Bleustein—Gulyayev
surface wave is found for the first mode of this SH wave propagation. Besides, the asymptotic solution for
higher wave modes is found to be the shear wave velocity of the piezoelectric layer. The comparison of
the dispersion curves for different ratios of the piezoelectric thickness is also conducted. The result of the
surface wave propagation in a semi-infinite piezoelectric coupled medium is used as the zero ratio of the
thickness of the piezoelectric layer for the comparison. The mode shapes of the deflection and the electric
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Fig. 6. Second mode shape of the piezoelectric layer at non-dimensional wave number 1.0.

potential of the piezoelectric layer are also derived, and the variation of the mode shapes shows a trend of
standard shapes to distorted shapes with more zero nodes for higher modes and at higher wave number.
This research provides the basic model for the analysis of the wave propagation in piezoelectric coupled
plate. In second part of the research, this type of surface wave solution will be used for the study of the
wave excitation by use of IDT.
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